TheModifiedBariumSwallowas a Tool: Assessing Deficits, Evaluating Strategies, Determining Treatment

"The clinician working on swallowing without benefit of data from a radiographic study is likely to make a number of erroneous management decisions relative to swallowing physiology."

Jeri Logemann, Evaluation and Treatment of Swallowing Disorders

Caroline M. Brindo, M.A./CCC–SLP
Clinical Manager, Ohio
MBS Envision, Inc.

Disclosures

- Financial:
 - Clinical Manager–Ohio for MBS Envision, Inc.
 - Portable Modified Bariums Swallows
- Non–financial
 - none

Why MBS?

- Screening tools—risk for aspiration, not swallow impairment
 - 3 oz water swallow test
 - (Suiter, 2008; Mari, 1997)
 - Oxygen desaturation test
 - (Gulati et al., 1995; Smith et al., 2000)
 - Gugging Swallow Screen
 - (Trapl et al., 2007)
 - Cervical auscultation
 - (Esli et al., 2004)
 - BSE?
 - (Bajlow et al. 2009)
 - Examined accuracy of clinical judgment during BSE with and without postural changes compared to MBS results.
 - In the 90s for determining no aspiration, around 50% in determining aspiration, with or without strategy use
 - FEES?
 - 96% agreement with regard to aspiration detection (Rao, 2002)
 - Cannot visualize oral structures, hyolaryngeal movement, base of tongue retraction, and the actual moment of swallow, all of which aids in clinical decision making

- Aspiration
 - Garon et al., 2009
 - 2,000 MBS completed
 - 51% aspirated
 - 55% of those who aspirated were SILENT aspirators
- Clinical signs
 - 74% accurate for detecting aspiration
 - Smith Hammond et al., 2009

Why MBS?

- Evidence Based Practice
 - Treatment should be based on best available evidence
 - Integration of
 - Clinical expertise
 - External best evidence
 - Patient/caregiver perspectives
- ASHA Preferred Practice Guidelines
 - The purpose of the MBS
 - Assess anatomy and physiology
 - Evaluate airway protection
 - Evaluate effectiveness of posture, maneuvers, strategies
 - Determine optimum delivery of nutrition/hydration
 - Determine therapeutic techniques
 - Gain information for collaboration

www.asha.org
Clinical Utility (Martin-Harris et al., 2000)
- Examination of 608 swallow studies
 - 10% “normal”
 - Aspiration in 32.4%
 - Swallow abnormality without aspiration 57.2%
 - Needed referral to specialist 26.3%
 - Strategies that improved swallow function 48.4%
 - Therapy recommended 37.2%
 - Changes in mode of intake 31.4%
 - Diet texture changes 43.8%

Cost effectiveness
- (Wilson and Rowe, 2012)
- Cost analysis of screening with MBS vs. BSE vs. both
- Cost of pneumonia treatment, quality of life years
- MBS is cost-effective and can save costs compared to BSE alone or combined

Thickener cost
- $200/month avg for thickened liquids
 - (Robbins et al., 2008)

QOL
- Making a decision for a patient that changes their QOL is a BIG DEAL! So make sure that you are sure!!

Identifying Deficits During MBS
- Poor oral manipulation and control
- Impaired A-P transfer
- Delay in swallow onset
 - Poor tongue base retraction
 - Incomplete hyoid/yoga excitation/excursion
- Inadequate pharyngeal contraction
- Disordered UES opening

Oral Phase
- Important to visualize as part of the MBS
 - Patient may appear outwardly to manipulate bolus appropriately, but during the MBS, SLPs can directly view the process

Assess
- Timing of mastication onset
- Adequacy of mastication
- Formation and cohesion of bolus
- Control of bolus
- Transfer of bolus

Oral Phase
- Inadequate Mastication
- Poor Bolus Formation
Oral Phase

—Strategy: Head back posture
- Use with patients with oral holding or poor A-P transfer
- Can be fully reclined, or semi-reclined
- Uses gravity to help in the transfer of the bolus
- Needs to be assessed during MBS, since it can increase the risk of aspiration with delayed airway closure
 - Can be combined with the supraglottic swallow to increase airway protection
 - (Logemann, 1998)

Oral Phase

—Strategy: 3 second prep
- Use with patients with poor oral control
- Patient is given a bolus, holds orally for 3 seconds, then is cued to swallow
- Many research studies have been completed comparing cued swallows vs. involuntary swallows (Nagy et al, 2013)
- Cued swallows have been shown to activate brain areas more widely (Michou & Hamdy, 2009)
 (Nonaka et al., 2009)
- Cued swallows have also been shown to decrease the frequency of bolus spillage to the pyriforms prior to swallow onset in healthy adults (Nagy)

Oral Phase

—Strategy: Dump & Swallow
- Use with patients with poor lingual control, impaired anterior to posterior transfer of bolus
- Instructions:
 - Hold breath tightly
 - While holding breath toss head back and dump liquid into throat all at once
 - Keep holding breath while swallowing 2-3 times or until liquid clears
 - COUGH to clear residue liquid.
- Also called the extended supraglottic
 - (Logemann, 1998)
 - Originally developed for patients with glossectomy

Oral Phase

—Strategy: Head back posture
- Use with patients with oral holding or poor A-P transfer
- Can be fully reclined, or semi-reclined
- Uses gravity to help in the transfer of the bolus
- Needs to be assessed during MBS, since it can increase the risk of aspiration with delayed airway closure
 - Can be combined with the supraglottic swallow to increase airway protection
 - (Logemann, 1998)
Oral Phase
–Strategy: Cold Sour Bolus
› Adding a cold and sour stimuli to bolus can decrease oral transit time (Gatto et al. 2013)
› Shorten pharyngeal time (Logemann et al. 1995)
› Assess during MBS
 (Logemann, et al., 1995)
 (Gatto et al., 2010)

Oral Phase
–Strategy: Cold Sour Bolus

Oral Phase
–Strategy: Sensory Stimulation
› Used with patients with oral holding, impaired A–P transfer (Logemann et al., 1995)
 › Change in flavor (sour) (Logemann et al. 1995)
 › Change in texture (carbonation) (Bulow et al. 2003)
 › Change in temperature (cold) (Bisch et al. 1994)
 › Change in volume (Bisch et al. 1994)
 › Thermal–tactile stimulation (Kaatzke–McDonald et al. 1996)

Oral/Pharyngeal Phase
–Treatment
› Lingual Strengthening
 › Resistance exercises (Lazarus et al., 2003; Robbins et al., 2005, 2007)
 › Increasing effort with progression in therapy
 (Robbins et al., 2005, 2007)
› IOPi
 › Iowa Oral Performance Instrument
 › Increased oral swallowing pressures
 › Increased airway protection with liquids
 (Adams et al., 2013)
› Madison Oral Strengthening Therapeutic Device
 › MOST
 › Increased lingual strength, swallowing pressures
 › Increased airway protection
 (Coyle et al, ASHA, 2013)

Pharyngeal Phase
–Delay in Swallow Onset
› Generally, we expect to see onset of the swallow as the head of the bolus passes posterior angle of the mandible
› Variability throughout normal swallows, especially in older population.
 (Humbert et al, 2009)
 (Martin–Harris et al., 2007)
› Not necessarily a disordered swallow

Pharyngeal Phase
–Delayed swallow

Generally, we expect to see onset of the swallow as the head of the bolus passes posterior angle of the mandible
Pharyngeal Phase

- **Strategy: Chin down posture**
 - Useful for delayed swallow, since valleculae space is larger, as well as incomplete hyolaryngeal movement (Logemann, 1993)
 - Chin is tucked down to front of neck
 - Moves anterior pharyngeal structures posteriorly
 - Narrows the laryngeal vestibule
 - Decreases distance from the arytenoids to the epiglottis
 - Airway is more protected, since opening is more narrow

- Not always effective (Shanahan, Logemann et al., 1996; Nagaya et al., 2004; Terre et al., 2012)
- Weaker pharyngeal contractions (Bulow et al., 1999)
- Use of chin tuck can be ineffective or worsen severity of aspiration with patients with weak pharyngeal constrictor muscles
- Remember Baylow study! 50%!
Pharyngeal Phase

Strategy: Supraglottic Swallow Maneuver
- Use for delayed onset, incomplete airway closure
- Inhalation with breath hold at level of folds, swallow, cough on exhalation
- Closes the airway at the level of the true vocal folds before and during the swallow
 - (Logemann, 1983)

Pharyngeal Phase

Treatment: Swallow Delay
- Thermal tactile stimulation
 - Cold stimulation to anterior faucial pillars
 - Innervated by trigeminal and glossopharyngeal nerves
 - Increased cortical activity
 - Research ongoing to determine efficacy
 - (Teismann et al., 2009)
 - (Rosenbek et al., 1996)
 - (Rosenbek et al., 1998)
 - (Regan et al., 2010)
 - (Sciortino et al., 2003)

Pharyngeal Phase

Reduced Tongue Base Retraction
- Results in
 - residue in pharynx after swallow
 - Reduced airway closure

Pharyngeal Phase

Strategy/Treatment: Effortful Swallow
- Use with reduced base of tongue retraction
- Swallow and squeeze all your throat muscles
- Improves posterior tongue base movement
- Increased pharyngeal contraction
 - Hind et al, 2001
 - Huckabee et al., 2005
 - Kahrilas et al., 1991
Pharyngeal Phase

-Treatment: Masako maneuver
- Used for tongue base retraction as a compensatory exercise
- Hold tip of tongue between teeth and swallow
- Increases the strength and bulging of the pharyngeal constrictor muscles
- Increased BOT contact and pressure
- Compensatory for decreased base of tongue retraction

Logemann, ARKSHA, 2013

Pharyngeal Phase

-Treatment: Base of tongue retraction
- Tongue pull-back
 - Tongue retracted to posterior pharyngeal wall
 - Hold with effort
- Yawn
 - Pretend to yawn
 - Hold tongue at maximum for 1 second
- Gargle
 - Hold tongue at maximum retraction for 1 second
- NOT /K/ AND /G/ WORDS
 - Not the right movement of the tongue, this is not base of tongue retraction

Veis et al., 2000
Logemann, ASHA, 2013

Pharyngeal Phase

-Incomplete Hyolaryngeal Movement
- Results in
 - Incomplete airway closure
 - Residues in pharynx, especially pyriforms
 - Decreased movement of epiglottis

Logemann, 1993

Pharyngeal Phase

-Strategy: Super-supraglottic swallow maneuver
- Use with incomplete hyolaryngeal movement, incomplete airway closure
- Inhalation with breath hold at level of folds, bear down hard, swallow, cough with exhalation
- Improves closure of airway vestibule
- Tilts the arytenoids forward, so more narrow opening

Pharyngeal Phase

-Strategy/Treatment: Mendelsohn Maneuver
- Use with incomplete hyolaryngeal movement
- Hold your swallow when you feel it lift up, hold the squeeze for several seconds
- Increases extent and duration of hyolaryngeal elevation (Lazarus et al. 1993)
- Increases the width and duration of the opening of the UES (Cook et al., 1989)
- Can improve the overall coordination of the swallow (Lazarus et al. 1993)
Pharyngeal Phase

- **Strategy: Mendelsohn Maneuver**
 - Effortful swallow
 - Patient is instructed to swallow with effort
 - Increased elevation of hyoid at the initiation of swallow (Bulow et al. 1999)
 - Increased tongue base and pharyngeal wall pressure and length of contact increased (Lazarus et al. 2002)

- **Shaker exercise**
 - Patient to lie flat and keep their shoulders on the floor
 - Raise their head high enough to see their toes, maintaining this position for maximum 1 minute
 - Repeat this activity 3 times
 - Followed by 30 consecutive repetitions of the same action, perform this exercise 3 times per day for several weeks.
 - (Mepani, Shaker, 2009)

- **Pitch glides**
 - Ask patient to start with a low “ah” and glide up the scale to a high “ee”
 - Should be effortful
 - Higher pitch raises larynx
 - (Pearson, 2013)

- **EMST**
 - Expiratory Muscle Strength Training
 - Exhalation against pressure
 - Shown in healthy volunteers to improve
 - neuromuscular control of suprhyoid muscle
 - cough strength
 - pulmonary function
 - vocal loudness
 - (Wheeler et al. 2007; Troche et al. 2010; Pitts et al. 2008; Wingate et al. 2007; Chiara et al. 2006; Saleem et al. 2005)

Pharyngeal Phase

- **Unilateral Pharyngeal Weakness**
 - Frequently seen with strokes
 - Need an A–P view, or oblique view

Pharyngeal Phase

- **Strategy: Head turn posture**
 - Turn head to weaker side
 - Directs bolus to stronger side

- **Strategy: Head tilt posture**
 - Head is leaned to stronger side
 - Directs bolus to stronger side
Pharyngeal Phase
- **Impaired Pharyngeal Contraction**
 - Aids in clearing bolus from pharynx during swallow, so impaired pharyngeal contraction will result in pharyngeal residue after swallow
 - (Kahrilas et al., 1992)

Pharyngeal Phase
- **Treatment: Pharyngeal Contraction**
 - Masako
 - Tip of tongue held gently between teeth during a swallow
 - Not to be used WITH a bolus, as it can increase the risk of aspiration
 - A resistance exercise, as it increases the effort needed by the pharyngeal constrictor muscles during a swallow
 - (Fujiu & Logemann, 1996)
 - Used for poor tongue base retraction as a COMPENSATORY exercise
 - Effortful Swallow

Pharyngeal Phase
- **CP dysfunction**

Pharyngeal Phase
- **Treatment: CP dysfunction**
 - Shaker exercise
 - Mendelsohn
 - Prolongs the UES opening during swallowing by extending laryngeal elevation
 - (McCullough et al., 2012)

Esophageal Phase
- Important part of the swallow process
- Can present at bedside as a oropharyngeal dysphagia
 - Ex: Cough after swallow–residues v. retrograde flow
- Esophageal dysfunction can be a result of reduced motility or obstruction
 - Motility–Ex. Achalasia, GERD
 - Obstruction–Ex. Esophagitis, Web

Esophageal Phase
- **Motility**
Esophageal Phase
- Obstruction

Esophageal Phase
- Treatment
 > Nope! Not our scope of practice

Why MBS?

Why MBS?
References